${\rm ASSIGNMENT}\, 1$

Formal Proofs and the Limits of Computation Spring 2022

Florestan Brunck & Yunzhe Li

CHOMSKY NORMAL FORM

Exercise 1 (Chomsky Normal Form). Let G be a context-free grammar. Give an algorithm, taking $\langle G \rangle$ as input which outputs a grammar G' in Chomsky normal form such that L(G) = L(G').

Exercise 2 (Bounded Derivations). Consider G, a context free grammar in Chomsky Normal Form, and w, such that |w| = n. Show that any derivation of w necessarily has length less than or equal to 2n - 1.

FINITE AUTOMATA CAN DO ADDITION

Exercise 3 (DFA for Addition). Consider the alphabet

$$\Sigma = \left\{ \begin{pmatrix} 0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \dots, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$

consisting of all 8 3-bits vectors. A string of symbols in Σ can be understood as specifying 3 integers a_1, a_2, a_3 in base 2, each corresponding to reading off a different row.

Construct a DFA M such that $L(M) = \{w \in \Sigma^* \mid a_1 + a_2 = a_3\}$

BUILDING THE SMALLEST, BIGGEST DAM

Exercise 4 (The (2,2) Busy beaver). Build a Turing machine with 2 states and tape alphabet $\{1\} \cup \{B\}$ which, on an input consisting of all blank symbols *B*, halts with the longest string of 1s on its tape.

Exercise 5 (The (3,2) Busy beaver). Challenge: Build a Turing machine with 3 states and tape alphabet $\{1\} \cup \{B\}$ which, on an input consisting of all blank symbols B, halts with a string consisting of as many 1s as possible on its tape.

RICE THEOREM

Exercise 6 (Any Non-Trivial Question about Turing Machines is Undecidable). A language property \mathcal{R} is called <u>non-trivial</u> if there exist two Turing-recognizable languages that respectively do and do not satisfy \mathcal{R} . Show that, for any non-trivial property \mathcal{R} , the set of all Turing machines whose language verifies property \mathcal{R} is undecidable, namely:

$$L_{\mathcal{R}} = \{ \langle M \rangle \, | \, \mathcal{L}(M) \in \mathcal{R} \}$$

is undecidable.

Remark. Use this to show that the language:

 $\{\langle G|G'\rangle \mid G, G' \text{ context free grammars}, L(G) = L(G')\}$

is undecidable.

CLOSURE PROPERTIES OF REGULAR LANGUAGES/FINITE AUTOMATA

Exercise 7 (Union). Recall that a language L is called <u>regular</u> if there exists a deterministic finite automaton M such that L = L(M). Show that for any two regular languages A and B, $A \cup B$ is also regular.

Exercise 8 (intersection). Show that for any two regular languages A and B, $A \cap B$ is also regular.

Exercise 9 (Complement). Show that if L is a regular language, then so is L^{C} .

Exercise 10 (Non-Determinism does not grant additional computation power). Consider a non-deterministic finite automaton N. Construct a deterministic finite automaton D such that L(D) = L(N).