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Abstract. We prove that every tetrahedron can be dissected into non-obtuse
tetrahedra.

1. Introduction

In the plane any obtuse triangle can be dissected into 2 right-angled triangles
by drawing the altitude from the obtuse vertex on its opposite side. The problem
generalises naturally to higher dimensions. We consider a simplex to be non-obtuse
provided no angle between two co-dimension 1 faces is obtuse. The problem at hand
is then to find a non-obtuse dissection of a simplex, i.e a partition into non-obtuse
sub-simplices. Unlike in the two-dimensional case, there seems to be no equivalent
trivial scheme to obtain non-obtuse dissections of n-simplices (n > 2). For exam-
ple, consider the simplex with vertices (−1,−1,+ε), (−1, 1,−ε), (1,−1,−ε) and
(1, 1,+ε) and notice that for ε small enough none of the vertices have orthogonal
projections lying on their opposite face. In three dimensions in particular, dihedral
angles correspond to angles in the spherical triangles formed by the link of the
tetrahedron’s vertices. One is then lead to dissect obtuse spherical triangles into
non-obtuse ones. As evidenced by Itoh and Zamfirescu’s work on minimal acute
triangulations of spherical triangles [JaT02], this is no longer a trivial problem. Our
main theorem thus offers a constructive answer to this interesting puzzle:

Theorem 1.1 (Main Theorem). There exists a dissection of any tetrahedron into
(at most 28) non-obtuse tetrahedra.

Organisation. Every planar triangle can be decomposed in 6 right-angled tri-
angles meeting at the centre of its inscribed circle (Figure 1). Our preliminary
dissection is a natural extension to 3 dimensions of this simple decomposition (Sec-
tion 3). Unlike in the plane however, this first dissection needs to be further refined
to guarantee non-obtuseness of its tetrahedra (Section 4). First, we establish some
elementary results to help characterize non-obtuse tetrahedra (Section 2).

Figure 1
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2. Non-Acute Cycles

In this section and throughout the rest of the article, a, b, c and d denote the
four vertices of a tetrahedron. For x, y ∈ {a, b, c, d}, we say that the edge xy is
non-acute if the dihedral angle at xy is non-acute. In this section only, we name
l the line ac and p the orthogonal projection of d onto the plane abc. We begin
by establishing two lemmas which will allow us to later verify that the dissection
introduced is non-obtuse. Although non-essential to our proof, we also draw as
corollary a simple classification of tetrahedra into 6 distinct types.

Lemma 2.1. If the dihedral angles at ab and bc are non-acute, then p lies in the
intersection of the two half-planes delimited by the lines ab and bc which do not
contain the triangle abc.

Proof. Fix and name ~n one of the two unit normal vectors to the plane abc. Since
the vectors ~ab, ~cb, ~n form a basis of R3, we can write ~bd as a linear combination
α~ab+β~cb+ γ~n, where α, β, γ ∈ R. The conditions on the dihedral angles at ab and
bc then become respectively β ≥ 0 and α ≥ 0, which proves the lemma. �

Using the same notation as in Lemma 2.1 we prove the following:

Lemma 2.2. If the dihedral angles at ab and bc are non-acute, then dist(l, p) ≥
dist(l, b).

Proof. Name ~m the unit normal vector to the line ac contained in the plane abc
and pointing towards the interior of the triangle. Observe then that 〈~m, ~bd〉 =
〈~m,α~ab+ β~cb+ γ~n〉 = α〈~m, ~ab〉+ β〈~m, ~cb〉 ≥ 0 , since 〈~m, ~ab〉 > 0 and 〈~m, ~cb〉 > 0.
This proves our claim that dist(l, p) ≥ dist(l, b). �

Figure 2

Lemma 2.3. There are no non-acute 3-cycles in the 1-skeleton of a tetrahedron.

Proof. Without loss of generality, consider the triangle abc and suppose by contra-
diction that its boundary forms a 3-cycle of non-acute edges. Applying Lemma 2.1
to the pairs of edges ab, bc and bc, ca we see that p is forced to lie in the intersection
of 2 disjoint regions of the plane (Figure 2), which is a contradiction. �

Figure 3

Lemma 2.4. There are no non-acute 4-cycles in the 1-skeleton of a tetrahedron.
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Proof. Suppose by contradiction that the edges ab, bc, cd and da form a non-
acute 4-cycle (indicated in bold in Figure 3). Denote by l the line ac and by p
and q the points obtained by projecting d on the plane abc and b on the plane
acd. Because the angles ab and bc are non-acute, Lemma 2.2 yields the inequality
dist(b, l) ≤ dist(p, l). Furthermore dist(p, l) ≤ dist(d, l) as p is the orthogonal
projection of d. Symmetrically, since cd and da are also non-acute, we obtain the
inequality: dist(d, l) ≤ dist(q, l) ≤ dist(b, l). This implies that d = p, which is
impossible. �

Corollary 2.5. The subgraph formed by the non-acute edges of a tetrahedron is
isomorphic to one of the following 6 graphs (the underlying K4 graph formed by the
1-skeleton of the tetrahedron is drawn in thin lines):

0 I II III IV V

Figure 4

Proof. If there are no non-acute edges the subgraph of non-acute edges is empty (0).
Because of Lemmas 2.3 and 2.4, the subgraph formed by non-acute edges contains
at most 3 edges and must be a forest. Up to an automorpishm of K4, the only
possible subgraph with one non-acute edge is (I). If two edges are non-acute then
either the edges are opposite (II) or they are adjacent (III). Finally, a forest with
3 edges on 4 vertices is a tree and there are only two trees with 3 edges up to
automorphism, namely a path of length 3 (IV) and a claw (V). �

3. The Inscribed Sphere Dissection

We now introduce a first preliminary dissection of a tetrahedron into at most 24
sub-tetrahedra. To begin, consider the centre o of the inscribed sphere to abcd (see
[Ber09, 10.6.8] for a proof of its existence and uniqueness). Throughout the rest of
the article we name p and q its orthogonal projections onto the planes (abc) and
(abd) (they always exist since the inscribed sphere is tangent to each face of abcd),
and r the projection of o onto the open edge ab (if it exists).

Figure 5
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This first dissection is determined entirely by points on the boundary of abcd.
Namely, all the sub-tetrahedra are constructed by taking the cone of vertex o and
base the triangle formed by the projection of o on one of the faces, its projection
on one of the edges of the selected face (if it exists), and one of the endpoints
of the selected edge. Assuming all edge projections exist and going through all
possible triples of (face, edge, vertex), this construction yields a decomposition into
24 tetrahedra (4 for each edge, or 6 for each face).

Lemma 3.1. If the projection r of o onto the edge ab exists, then the tetrahedron
arpo is non-obtuse.

Proof. By construction, the dihedral angles at ap, pr and ro are all right angles.
Since there are no non-acute 3-cycles both op and ar are acute. Similarly, since
there are no 4-cycles, it must be that ao is also non-obtuse. �

Lemma 3.1 shows that if o projects onto all edges, this preliminary dissection is
already non-obtuse.

Unfortunately, the projection of o onto every edge of abcd is not guaranteed. To
see why, remember from linear algebra that projecting o onto the edge say ab or
projecting p onto that same edge yield the same point. Thus if abcd is such that the
face abc (for example) forms an obtuse triangle, p — and therefore o — does not
necessarily projects onto one of the sides of abc. It is possible then that either the
projection of p onto ab is degenerate and coincides with either a or b, or it simply
does not exist. In the former case, Lemma 3.1 guarantees that the tetrahedron abpo
is non-obtuse, and similarly for the opposite (identical) tetrahedron abqo.

If, however, o does not project onto a given edge, we replace the 4 corresponding
sub-tetrahedra in our preliminary dissection by the 2 tetrahedra formed by taking
the 2 cones of vertex o and base the triangle with vertices the projection of o on
either one of the two incident faces to that given edge and the two endpoints of
that same edge. Unfortunately these new tetrahedra are not guaranteed to be non-
obtuse and might need to be further dissected. Fortunately however, the following
claim guarantees that at most 4 such tetrahedra might require our attention:

Claim 3.2. There are at most 2 edges on which o does not project, furthermore if
such is the case, then they must be opposite edges.

Proof. Select an edge, say ab, and suppose that o does not project onto it. Observe
that any interior point of a euclidean triangle always projects on at least two sides
since for any given point of the triangle, the two regions corresponding to points
without projections on either one of the two edges meeting at that point are disjoint.
So it must be that o has projections on both bc, ac, and bd, da and there remains
only the edge cd onto which (possibly) o does not project. �

4. Proof of the Main Theorem

Starting with the inscribed sphere dissection prescribed in section 3, Lemma 3.1
guarantees that this preliminary dissection is non-obtuse as long as o projects onto
all the edges of abcd (even if that projection is degenerate). Suppose then without
loss of generality that o does not project onto the edge ab - if o is also missing a
projection onto the opposite edge cd, the corresponding tetrahedra will be dealt
with accordingly with the same procedure. The task at hand is then to dissect
the tetrahedra apbo and abqo. Since both tetrahedra are identical, we restrict
our attention to abpo and proceed to prove Proposition 4.1, from which our main
theorem follows directly.
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Figure 6

Proposition 4.1. There exists a dissection of abpo into 3 non-obtuse tetrahedra.

Proof. We know that either the angle ∠abp or the angle ∠pab is obtuse as o does not
project onto ab. Suppose without loss of generality that ∠abp is obtuse (Figure 6).
Observe first that the dihedral angle at ap is a right angle and thus the orthogonal
projection h of b onto the plane apo lies on the line ap. Furthermore our assumption
that ∠abp is obtuse guarantees that h lies in the open edge ab. Observe both
projections of b onto the edges ao (h′ in Figure 6) and op exist: p is the orthogonal
projection of o onto abc and thus both ∠bpo and ∠apo a right angle. This also
tells us that the projection onto op coincides with p. Lemma 3.1 then guarantees
that this dissection is non-obtuse (replacing o with b) and since the triangle apo has
been partitioned in 3 sub-triangles this construction yields 3 sub-tetrahedra. �

As noted in Claim 3.2, at most 2 edges can be missing projections from the
center of the inscribed sphere, in which case there is a need to further dissect 4 sub-
tetrahedra using Proposition 4.1. In total this yields a dissection of any tetrahedron
abcd into at most 24− 4× 2 + 4× 3 = 28 sub-tetrahedra.
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