MY KINGDOM FOR A CYCLOGON! THE QUADRATURE OF A DISCRETE CYCLOID

FLORESTAN BRUNCK

ABSTRACT. We give an elegant formula for the area under the curve traced by a chosen vertex of a regular n-gon, rolling without friction on a line. Namely, we show that it is equal to the area of the polygon itself plus twice that of its circumscribed circle. Taking the limit as n goes to infinity provides a new proof of the formula for the quadrature of the cycloid. The proof involves a generalisation of the Pythagorean theorem which might be noteworthy on its own.

Remark. Since posting this short proof, I was made aware that this is a rediscovery of [1] and adopted their terminology in the title to reflect it.

Consider a regular *n*-gon \mathcal{P}_n inscribed in the unit circle \mathcal{C} . As \mathcal{P}_n rolls without friction on a line *l*, a fixed vertex *V* of \mathcal{P}_n traces a piecewise continuous curve γ_n (called a *cyclogon* in [1]) between any two successive points of contact of *V* with *l* (see Figure 1).

Theorem. The area A_n of the region delimited by l and γ_n is equal to twice that of the circumscribed circle \mathfrak{C} to \mathfrak{P}_n plus the area of the polygon itself:

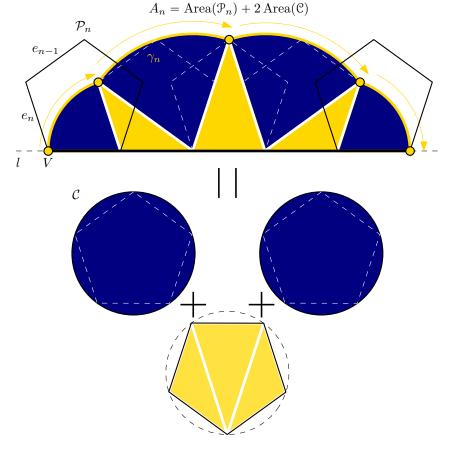


FIGURE 1: The crown's area (in gold) equals that of the polygon itself, while the blue area totals twice that of its circumscribed circle.

Proof. Order the edges of \mathcal{P}_n counter clockwise from e_1 to e_n and assume \mathcal{P}_n rolls on l without friction towards the right (see Figure 1). The movement of \mathcal{P}_n is then a succession of n identical steps, where step i starts off with e_i lying flat on l, followed by \mathcal{P}_n 's rotation at an angle of $\frac{2\pi}{n}$ about the rightmost endpoint of e_i , until e_{i+1} lies flat on l. Imagine then a fixed, immobile regular n-gon \mathcal{P}_n^{ref} which we translate and superimpose on \mathcal{P}_n at the beginning of each step i. Label its vertices V_1 to V_n (see Figure 2). Effectively, each step i sees V move from V_i to V_{i+1} . The area A_n can thus be decomposed into two parts: a golden *crown* consisting of n-2triangles, each joining the base of \mathcal{P}_n^{ref} with one of the n-2 vertices which do not lie on the base; and a collection of n-1 blue angular sectors, each of angle $\frac{2\pi}{n}$ and radius equal to the *diagonal* d_i joining V_n to V_i , $i \in [n-1]$. It is clear that the area of the golden crown is that of the regular n-gon itself. We are left to compute the blue area. This area is equal to $\sum_{i=1}^{n-1} \frac{\pi}{n} d_i^2$.

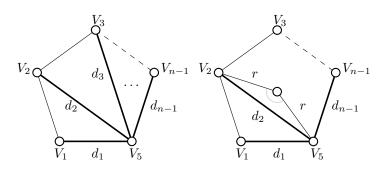


FIGURE 2: The numbering scheme for the polygon $\mathcal{P}_n^{\text{ref}}$ (left) and the isosceles triangle used for the cosine rule (right).

Using the cosine rule in the isosceles triangle with base of length of d_i and twin sides of unit length (see Figure 2), we get that $d_i^2 = 2(1 - \cos \frac{2\pi}{n})$. Recalling the fact that the sum of the *n*-th roots of unity totals 0 – or equivalently that the sum of the *n*-th roots of unity excluding 1 is -1 – this directly leads to:

$$\frac{1}{n}\sum_{i=1}^{n-1}d_i^2 = \frac{1}{n}\sum_{i=1}^{n-1}2\left(1-\cos\frac{2\pi}{n}\right) = 2\frac{(n-1)-(-1)}{n} = 2$$

Multiplying both sides of the previous equation by π yields the proof of the theorem.

Corollary. The quadrature of the cycloid is equal to thrice the area of the rolling circle.

We end with a remark that our previous computation shows a fact that is perhaps interesting on its own, namely that the radius of a circle averages the diagonals of an inscribed polygon in the following sense:

Theorem (Generalised Pythagorean Theorem). Let \mathcal{P} be a regular polygon inscribed in a circle \mathcal{C} . The square of the radius of \mathcal{C} is equal to half of the average of the squared distances from one vertex of \mathcal{P} to all the other vertices of \mathcal{P} .

Remark. When the polygon is a square, this is equivalent to the Pythagorean theorem.

F. BRUNCK

References

[1] T.M. Apostol and M.A. Mnatsakanian. Cycloidal areas without calculus. Math Horizons, 7(1):12–18, 1999. $\uparrow 1$

Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Lower Austria, Austria

 $Email \ address: \verb"florestan.brunck@mail.mcgill.ca"$