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1. Introduction

Packing, covering and tiling problems are among the most basic combinatorial
and geometrical problems, yet they were quickly understood to be quite difficult
computationally. In the following we consider the square lattice Z2. A tile is a
union of cells of this lattice. A tiling of a region R (obtained as a union of cells
of Z2) by a set of tiles Σ is both a covering and a packing of R by translated
copies of tiles of Σ, i.e. a covering of R by translated tiles of Σ whose interiors do
not intersect. We will refer to the union of two adjacent cubic cells as a domino.
Perhaps the most fundamental problems are the following two:

tiling problem:
instance: A finite set Σ of tiles.
question: Does Σ tile the entire Z2 lattice?

finite tiling problem:
instance: A region R and a finite set Σ of tiles.
question: Does Σ tile R?

The first problem was expected to be rather easy but was surprisingly shown to
be undecidable. This owed to the belief at the time that aperiodic tilings did not
exist. Indeed, if all tilings of Z2 were periodic, two simple semi-algorithms could be
run in parallel to decide the tiling problem. First, a compactness argument shows
that if one can cover larger and larger disks with tiles from Σ then one can tile
the whole plane with tiles of Σ. By contrapositive, if Σ does not tile the whole
plane, there must exist some disk Dn of radius n which cannot be covered by Σ
and there is a semi-algorithm which attempts covering larger and larger disks until
it fails to do so and stops to confirm that Σ cannot cover the whole plane. On the
other hand, if all tilings are periodic then we need only exhaustively search for the
period and try to tile bigger and bigger rectangles while trying to match left-right
and top-bottom. If Σ tiles Z2, a periodic box will eventually be found. Running
both semi-algorithms in parallel would decide the tiling problem were it not for the
existence of aperiodic tilings. Against the expectations, Berger discovered the first
aperiodic set of tiles [1] (with roughly 10 000 tiles, later reduced all the way to 2
by Penrose and eventually to 1 by Smith et al [7] earlier this year).

Theorem 1.1 (Berger). There exist aperiodic sets of tiles, namely, sets of tiles
that tile the whole plane but only aperiodically.

And the tiling problem was shown to be undecidable by Berger [1].

Theorem 1.2 (Berger). The tiling problem is undecidable.

Very informally, the essence of the proof is a reduction to the halting problem
where one shows how to simulate the computation of a Turing machine with a
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specifically designed set of tiles. Horizontal lines correspond to the tape of the
Turing machine, marked with the current symbol being read and the current state
transition being triggered. The tiles are designed so that the only way to obey the
matching rules is to tile the horizontal row above to reflect the next state of the
Turing machine and its tape. If the Turing machine terminates, the set of tiles
cannot tile the whole plane and vice versa. Thus is one could decide the tiling
problem, one could decide the halting problem.
The second problem, being finite, is obviously decidable by exhaustive search.

However, it was shown to be in NP , and in fact NP -complete [4]. Thus we should
not be surprised that even finite tiling problems can be very hard.

Theorem 1.3 (Lewis). The finite tiling problem is NP -complete.

Interestingly though, the particular finite region to be tiled, as well as the tiles
play a major role in the hardness of the problem, and a lot of subclasses of tilings
have been given polynomial time algorithm already. For recent work in this fasci-
nating topic, see for example [5]. We just mention in passing this theorem of Pak
and Yang:

Theorem 1.4 (Pak, Yang). There exists a finite set R of at most 106 rectangular
tiles, such that the tileability problem of simply connected regions with R is NP -
complete.

In addition, combinatorial colouring arguments starting emerging to give criteria
for when a region would be guaranteed to be impossible to tile. Eventually, a
number of these arguments coagulated and were subsumed by Conway’s Tiling
Group criteria [3, 8], which in the case of domino tilings for example gave rise to
a necessary and sufficient criterion for tileability of a region by Thurston together
with the discovery of height functions.
Before explaining what height functions are and where they come from, let us

give a few important results first that arise from it.

Theorem 1.5 (Thurston). There exists a linear time (in the size of the region) to
decide if a region admits a tiling by dominoes, and if so, output a tiling of it.

Remark 1.6. This an improvement over the polynomial bound of Op
?
V Eq given

by the best algorithms for perfect matchings in a graph G “ pV,Eq.

Perhaps the most remarkable and elegant perspective to come out of height
functions is that the set of all domino tilings of a simply connected region forms a
single distributive lattice whose partial order is given by a local operation called a
flip [6].

Theorem 1.7. The set of domino tilings of a fixed simply connected region forms
a distributive lattice whose partial order coincides with the flip order.

Which in particular gives connectivity under flips and easy formulas to compute
flip distances.

Theorem 1.8. Any given tiling by dominos of a simply connected region is con-
nected by flips.

2. What are height functions?

There are at least three different ways to define and prove properties about height
functions:
(1) The physics way [2], which sees it as the gradient arising from the unique
curl-free flow one can associate to a tiling by domino / a perfect matching
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of the region involved. The construction may seem ad hoc from the outside
but is elegant and quick. Although this is because the core property is
now hidden in the proof that curl-free flows all arise from a gradient. Note
that this uses ultimately Stokes’ theorem which requires simple connected-
ness (and indeed all results fail if we allow the region R to have holes for
examples. The main advantage is to make it easy to generalise to higher
dimensions because this flow can be defined just as well, and even if the
curl of a flow doesn’t really exist in higher dimensions, we can treat directly
with the flow itself.

(2) The computer science way [6], equally ad hoc, elementary and thorough
but tedious and proving properties feels a little unecessary once one learns
about (3). No direct hint of generalisation.

(3) The (geometric) group theoretic way [3, 8], which arguably motivates the
definition/discovery the most. Quite a general method, with possible hints
of generalisations.

The hope is to associate a unique function to a domino tiling of a fixed region so
that we can fully encode tilings as height functions and only deal with the height
functions themselves, which have very nice properties. In practice a height function
is simply a function h : V pRq Ñ Z from the vertex set of the lattice region R to the
integers.

(1) Curl-free Lattice Flows. The tiling is a described here first as a matching
of the dual. Which we partition between odd and even vertices (even vertices are
depicted in blue in Figure 1). The dual us oriented from even to odd vertices and a
positive unit charge flows from a domino’s even vertex to its matched odd vertex.
Subtracting a reference flow where even vertices flow with a ´ 1

2d charge to their
odd neighbours (where d is the dimension) makes this flow divergence free. This
directly induces a curl-free flow in the original lattice by rotating all edges and
their associated orientation 90 degrees (see Figure 1). Once again, curl-free flows
on simply connected regions all arise from a gradient, which we define to be the
height associated to that tiling. Schematically:
Tiling ðñ curl-free Lattice flow on Z2 ðñ gradient = height function

+1 +1 +1

+1

+1 +1

Figure 1: A divergence-free flow in the dual (on the left) corresponds
to a curl-free flow in the square lattice (on the right).
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Figure 2: The correspondence is given by rotation each edge
clockwise.

(2) Random Arrows on Checkerboards. This is essentialy the same as (3), but
forgetting its origin and motivation. It amounts to defining the same orientation as
in (1) and, starting from a designated reference point, following the arrows counting
direct arrows as `1 and indirect as ´1 to give a vertex its height. One easily shows
that this is well defined as long as we only allow paths going around tiles (such as the
orange one on Figure 1). We will refer to those as tiling paths in the next paragraph.
It is then showed that if we restrict integer functions on the vertices to obey the
same rules as the height functions arising from tilings (namely, increase either by 1
or by 3 following direct arrows), we get an expected 1-to-1 correspondence between
tilings and this subset of height function.

−1

−1

−1−1

+1

+1

−1

+1

+1

−1

= −1

Figure 3: Any two tiling paths from and to the same points will yield
the same height difference.

Once we equate tilings with height functions, it is quick to show that tilings
form a distributive lattice, where meet and join correspond to min and max of the
functions. And one can see that flips correspond to local min/local max.
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Figure 4: The lattice of domino tilings, going from the minimum
tiling at the bottom to the maximum tiling at the top.

(3) Conway’s Tiling Groups. The previous two definitions arguably hide why
height functions exist at all and why we should expect this random colour-
ing/orientation on the squares to work all. The price of smooth sailing is a lack
of intuition and understanding as to how one might arrive at the definition in the
first place. To remedy that, we want to show how it is in fact very natural to dis-
cover height functions as a lift of the original tiling to the tiling group, defined by
Conway. And why this lifting idea is a very natural, assuming one is familiar with
elementary rudiments of geometric group theory/algebraic topology. Deep down,
we will see that it all boils down to a very simple application of one of the most
beautiful connections between algebra and geometry: the correspondence between
normal subgroups and covering spaces.
In group theory, we can define groups via presentations. Essentially, we describe

a group by its generators (think p0, 1q and p1, 0q for the lattice Z2) and specify its
structure by a list of the relations (also called relators) that it satisfies. For Z2,
the only structure is really that we have squares, i.e. that ab and ba commute,
so the only relation is ab “ ba or simply written as aba´1b´1 (meaning that this
word is trivial in the group). The proper way of defining Z2 that way is to start
with the free group on two generators F2, i.e. the group with two generators a
and b and no structure/relation, so any word in a and b and their inverses (like
abbab´1) is valid and distinct. Then kill off (i.e. identify to the identity) all the
words that correspond to squares. The proper way of doing that is to quotient by
the normal subgroup we get by taking all the conjugates of squares (the so-called
normal closure). Even without going into the apparent technicalities of why we
need subgroups to be normal (more on that in a different post and how normality
is a particular instance of the natural notion of congruence), this is what we want:
conjugates of the square at the origin are all the other squares conjugated by the
path leading up to them.
The next step is to start introducing geometry and talk about Cayley graphs.

Given a group G with two generators a and b (the same works for any group of
course), the Cayley graph ΓpGq is the directed graph where vertices are group
elements and we draw a directed edge between two group elements/vertices if they
differ by a generator. So that for each vertex, we have four edges, two outgoing
edges leading from w to wa and wb, and two incoming from wa´1 and wb´1.
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w

wa−1

wa

wb−1

wb

Figure 5: A vertex in the Cayley graph ΓpGq.

In a group defined by a presentation, a word in its generators corresponds to
the identity if and only if it can be written as a product of conjugates of relators
(that was our definition). Pictorially, in the Cayley graph ΓpGq, this corresponds
to having the word under consideration trace a loop to and from the origin and
tiling it with tiles corresponding to conjugates of the relators. So in Z2, we see that
a word is trivial if it goes around the grid and come back to the origin. It is then
tiles by conjugates of squares.

R

w

γ

Figure 6: A word w is trivial in the Cayley graph ΓpGq if it traces a
loop to/from the origin (in dark blue) and can be tiled with conjugates
of relators, such as the orange hatched square conjugated by the violet

path γ, i.e. γpaba´1b´1
qγ´1.

Conway’s simple but clever idea is then to define a group T with generators
given by the underlying lattice of the tiling (the squares in our case) and such that
its structure/relations correspond exactly to reading off words going around tiles
in all their possible orientations. Because then deciding if a particular word (the
word read going around a particular polygonal boundary in the lattice) is trivial in
the tiling group is the same as deciding whether it can be tiled! This is the part
that is usually proved by induction in definition (2): it is certainly true for a single
tile, and then we can just cut up the boundary as the concatenation of two smaller
loops to get the results. Note the small technicality that there are false positives if
we allow the region to have cut vertices for example. But then each side of the cut
vertex can be treated separately.
In the case of domino tilings, the generators say a and b are the standard Z2

generators p1, 0q and p0, 1q. The contour on a domino then either reads the word
DH “ ab2a´1b´2 or DV “ a2ba´2b´1 depending on whether they are laid horizon-
tally or vertically. The tiling group (also called the domino group in this case) is
then simply defined as the group D with presentation:
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D “ xa, b | DH , DV y

a

b

b

a−1

b−1

b−1

a a

b

a−1a−1

b−1

Figure 7: The relators DV and DH in the Domino group.

Now the magic is that D is a quotient of Z2, which means that it is a covering
space of the planar lattice. So the hope is that we can see the Cayley graph of
D directly hovering over Z2. We will see how to do just that but for now, we can
already notice the core property that allows the first two definitions (1) and (2) to
work: every path in the underlying lattice can be seen as a word in D and has a
unique lift in D, and if we fix a region R (i.e. a word w which form a loop to the
origin) and a tiling of it, then:

Proposition 2.1. Any tiling loop, i.e. a closed path π which “follows the tiling”
and never cuts a domino transversely, is trivial.

This is really immediate: if we go around dominos, we’re really following conju-
gates of relators and making sure our loop is filled with conjugates of relators, i.e.
we’re making sure that it is trivial.

Corollary 2.2. (non necessarily closed) Tiling paths with the same start and end
point have the same lift in D.

This allows us to have a well defined lift of the entire tiling to the Cayley graph of
D. Then the really nice thing in the case of dominoes or lozenge tilings is that the
quotient of the projection from the tiling group to the lattice group is isomorphic
to Z, which allows one to associate a height to each lifter point instead. This gives
rise to the promised height function. But in practice, what makes height functions
work and give a criterion and algorithm to output a tiling if one exists and figure
out if it does not is really the knowledge of the Cayley graph/tiling group.
Now onto building ΓpGq. We try to see what happens we move across the

underlying lattice and figure out when we loop to the same vertex or end up in
different places. Starting from a vertex w and walking along b we reach a new
vertex. Multiplying by a´1 and generally following the boundary of the square
in which w was the lower right corner, we end up with 5 different words/vertices
by the time we’re back directly under w. And we can see that this keeps going
indefinitely, as we cycle around this square counter clockwise, all the words we
obtain are different, so we can start by placing on a counterclockwise coil above
this square (see Figure 8).
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+1

+1

+1

+1

+1

+1

+1

+1

+1

+1+1

Figure 8: The Cayley graph ΓpGq is constructed from joining
clockwise and counterclockwise “coils” spiralling over each square of

Z2.

This is true of all squares, so that we may think of placing a coil on top of every
square. But the issue if then of course to figure out how these coils interact and
match up on the boundaries of squares. If we explore the adjacent square in which
w is the lower left corner, we realise that matching them up forces us to reverse the
orientation of one of the coils, so that there is a clockwise coil on top of a square
and a counter clockwise coil on top of all adjacent squares (see Figure 9).

Figure 9: After joining coils, we see the relators of dominos appear
(in bold on the figure).

Flips Seen in the Cayley Graph. So now, going back to (2) we can directly
see the effect of a flip on the Cayley graph. As can be seen from the formulation
of the meet-join distributive lattice (where the meet operation is taking the min
and the join is taking the max), flip correspond to local minima or maxima within
a square of 4 squares. In the Cayley graph, this looks like a bun made of 4 cells,
the top 2 of which will be horizontal/vertical and the bottom 2 of which will be
vertical/horizontal.
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Figure 10: A flip corresponds to looking at either the top or the
bottom of a two-by-two cell.

3. thurston’s algorithm

The idea here to output a single tiling of R (or to figure out that there’s no such
tiling at all) is to produce the one with the lowest lift. If there’s a tiling at all,
then there is a lowest tiling, and it is straightforward how to construct it. Being
the lowest tiling, the highest vertices will be on the boundary, so we can start there
(if it was not on the boundary, we could punch down cells, i.e. flip them to go
lower). Due to the observation also that the boundary is necessarily a tiling path
no matter the tiling, the heights of its vertices is independent of the tiling involved.
So we start there. Given that our cells must go down from the boundary, the
only possibility is to lay dominoes such that their centre is lined up against a local
max on the boundary (see Figure 11). We then simply keep iterating this process,
adjusting the boundary as we go. Either this process terminates and we reach the
minimum tiling of our region, or we can no longer place a tile and conclude that
our region cannot be tiled.

(a) : Seen from the top. (b) : Seen in perspective.

Figure 11: The minimum domino tiling for a four-by-four square.
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(a) : Seen from the top. (b) : Seen in perspective.

Figure 12: A tiling obtained from flipping the top-centre two-by-two
square in the minimum tiling.
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