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Abstract. Fabricius-Bjerre’s formula gives a combinatorial formula relating
the number of different types of bitangents of a plane curve to other sim-
ple invariants of that curve (namely, its number of inflection points and self-
crossings). A natural generalisation might be to consider tangent polygons
inscribed in a curve instead of bitangents (which we can think of as 2-gons).
In the simplest extension, we would like to obtain a similar combinatorial
formula for tangent triangles inscribed in a curve. This requires understand-
ing what the different kinds of tangent triangles should be, as well as what
invariants they ought to be related to.

Consider a sufficiently regular plane curve Γ (how regular we really need it to be
will be determined later on). For now, we will consider Γ to be the geometric image
of a parametrized curve γ and assume γ to be C8. Likewise, we shall assume all
inflection points, self-crossings and bitangents are regular enough for the present
discussion to make sense (e.g. non-zero curvature at bitangents and the likes..).

1. Two, Four, and Eight Types of Triangles

In the original proof of Fabricius-Bjerre, 6 types of bitangents are distinguished,
depending on which side the curve is on at the 2 points of tangency, and which
orientation the curve possesses at each point. This should result in 42 “ 16 choices,
but only 8 if we do not wish to distinguish between the two vertices, and only 6 up
to planar direct isometry.

Figure 1: The 3 different types of positive/negative bitangents on the
left/right.

It should be noted that while the 6 different types play a role in the proof,
where two identities obtained for direct and indirect tangent rays give two relations
between the various types, in the end the identity ignores the orientation of the
curves at the points of tangency and only cares about the geometric information of
whether the curve is on either side of the bitangent or not.
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Following this approach, it seems sensible to distinguish 4 types of tangent tri-
angles (where we previously had 2 types of bitangents).

Definition 1.1 (4 Triangle Types). Given a tangent triangle T inscribed in the
plane curve Γ, we begin by giving each side of T an orientation, according to the
direction of the tangent ray that supports it. We then assign to each side the colour
blue (resp. red) depending on whether the curve lies in the positive (resp. negative)
half-plane supported by the associated oriented tangent ray. There are 23 distinct
2-colourings of a triangle, but only 4 are distinct up to direct planar isometries.
These are the 4 types of triangles we shall consider.

I II III IV

Figure 2: The 4 types of tangent triangles.

Figure 3: Example of a tangent triangle of type IIb (left) and IIIb
(right).

Definition 1.2 (8 Triangle Types). Each family of triangles can be further subdi-
vided into 2 sub-families, denoted by subscripts a or b. Depending on the parity of
the number of triangle vertices at which the curve lies inside/outside the tangent
triangle, where a positive sign is assigned if the curve lies inside, we assign the
subscript a (resp. b) to an even (resp. odd) parity.

Observation The previous parity is in fact the same as the orientation of the
tangent triangle, since there can only be 2 solutions. Thus for example, Type IIa
corresponds to a counter-clockwise oriented tangent triangle, while IIb corresponds
to a clockwise oriented one.
This parity affects the sign of the derivative of τ3, where τ is the multifunction

which maps the parameter t of a point γptq to the parameter(s) of the intersection
point(s) between the tangent to Γ at γptq and Γ itself. (Note that the tangent
triangles correspond to fix points of τ3). For example, a type IIb or IIb would
correspond to a negative derivative (see for example Fig. 4) and thus a locally
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unique fixed point for τ3, while type IIa and IIa correspond to a positive derivative
and thus might lead to complications (see Fig 3 and Fact II in section 2).
Remark. It is also worth noting - as added justification to make this definition

less arbitrary - that the determinants used to define the triangle types pop up in
Halpern’s proof of the Fabricius-Bjerre formula if we were to adjust the vector field
whose 0 are counted in a natural way.
Yet, after running computer experiments, it seems what matters most is the

following definition:

Definition 1.3 (2 Triangle Types). A tangent triangle is positive (resp. negative)
depending on the even (resp. odd) parity of its number of blue sides (i.e., triangles
of type II and IV are positive, and I and III negative).

Computer experiments seemed to very strongly suggest the following conjecture:

Conjecture 1.4 (False conjecture, but somehow mostly true). The number of
positive tangent triangle is always equal to the number of negative tangent triangles.

Figure 4: The conjecture is easily verified for all curves with at most
two inflection points and no self-crossings.

2. Counter Examples

The natural way to go about this problem when doing computer experiments
is to discretize the setting and look at polygonal curves, especially since Banchoff
gave a simple elementary proof of the Fabricius-Bjerre’s formula using deformation
arguments for polygonal curves. Doing so, it is much easier to generate and dream
up counter examples, which in this section will be stated for polygonal curves.
Fact 0. There exists a polygonal curve for which an elementary deformation

changes the count of positive tangent triangles by 1, while leaving the count of
negative tangent triangles, self-crossings and inflection points unchanged.
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Figure 5: The underpinned elementary move eliminates the depicted
type II triangle and does not create any other triangle or self-crossing

or inflection point.

Fact I. There exists a polygonal curve with only two tangent triangles, one
triangle of type Ia and one triangle of type IIb.
(Insert image)
Fact II. If a curve admits a triangle of type a (of any of the 4 types), we can

“blow up” this triangle into arbitrarily many triangles of the same type, locally.
The justification of Fact II is given by figure 5, where we can devise a recur-

sive subdivision/smoothing scheme to generate arbitrarily many “duplicates” of an
original pair of tangent triangles. In the continuous setting, this corresponds to
the fact that in the situation where a type IIa triangle exists, nothing prevents the
second derivative of the function τ3 from being positive. In practice, it is possible to
adjust the curvature and position of Γ so that τ3 is the identity of an interval. This
can be obtained for example by considering the limit of the recursive subdivision
scheme, since the associated limiting curve is smooth and has all its vertices part
of a tangent triangle.

Figure 6: Example of a doubling of a type IIa triangle in the discrete
setting.

Together with Fact I, Fact II yields the following fact without too much effort:
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Fact III. There exist polygonal curves which have an arbitrarily large gap be-
tween their number of positive and negative tangent triangles.
Remark. Fact III might not be so interesting, but more akin to the regularity

requirement that bitangents cannot have 0 curvature in the Fabricius-Bjerre setting.
In some sense, Fact 0 is perhaps more disheartening.

3. Curve Types and New Conjectures

Thinking more about Fact 0 brought the following objects and questions to mind.

Definition 3.1 (Curve Type). To every curve Γ, we associate a multigraph GΓ

with vertex set its set of inflection points and self-crossings, where we insert a
distinct edge between two vertices u and v (or a loop based at a single vertex) for
each distinct path in Γ joining u and v that does not contain an inflection point or
a self-crossing. We then 2-colour the vertices of GΓ depending on whether they are
inflection points or self-crossings. The colour-preserving isomorphism class of GΓ

is called the curve type of Γ.

Figure 7: The only two curve types with 1 self-crossing and two
inflection points.

For any given curve type, there is a representative curve Γ which minimises
the number of positive tangent triangles and one which minimises the number of
negative tangent triangles.

Conjecture 3.2. Every curve type has a representative that minimises the number
of positive and negative triangles simultaneously. Moreover, for such a represen-
tative, the number of positive tangent triangles is equal to the number of negative
tangent triangles.

Vague Questions Since our first conjecture fails, why is it at all the case that
computer experiments return at most a gap of 1 or 2 between the positive and
negative triangle counts? (Even on complicated curves with more than a hundred
of tangent triangles). Could we show that the identity is only false for a set of curves
of measure 0? What is a random polygonal curve? How do we put a measure on
the space of such polygonal curves? Maybe easier with linkages since their moduli
spaces are finite dimensional?
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