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Abstract. Given a set of points X together with a metric d, an ϵ-set N Ď X

is a set of point such that for every point x P X, there exists a point npxq P N

such that dpx, npxqq ď ϵ. It is a classical problem of discrete and computational
geometry to find ϵ-nets of small size. In the late 1980s, Haussler and Welzl [4]
showed bounds on the size of such sets in the realm of much more abstract and
less geometric sets of points, using only the finiteness of their VC-dimension.
Their result shows that sets of VC-dimension at most d behave much like
Euclidean balls of dimension d.

1. Introduction

In everything that follows, X denotes a set of n elements and
H “ tH1, H2, . . . ,Hmu a set system on X.

VC-dimension of Set Systems. We say that H shatters a set A Ď X if every
subset B of A can be obtained as the intersection of A with an element of H, i.e.
for all B Ď A, there exists H P H such that H XA “ B. The VC-dimension of H is
the maximal size of a set A that is shattered by H. Pictorially, it will prove useful
to look at set systems as Boolean matrices with columns indexed by elements of X
and rows indexed by elements of H, so that the corresponding cell in the matrix is
a 1 if the set contains the element, and 0 otherwise.
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Packing of Euclidean Balls. Let Cd
n “ r0, nsd denote the Euclidean cube of

side-length n and dimension d. In this setting, finding a small ϵ-net for the cube is
equivalent to finding a small set of Euclidean balls that cover it. Equivalently, we
may look at it from the perspective of packings, since finding minimal covers is dual
to finding a maximal packing. Thus our aim is instead to find a set P of ϵ-separated
points in Cd

n, i.e. points pairwise at a Euclidean distance further than ϵ away from
each other. Note that a maximal ϵ-separated set is a ϵ-net. The problem at hand is
then to pack Euclidean balls of radius ϵ

2 inside the slightly larger cube r´ ϵ
2 , n` ϵ

2 sd.
A volume argument gives us an upper bound on the maximal cardinality of P :
each such ball has a volume greater than p ϵ

2 qd and the total volume of the cube
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r´ ϵ
2 , n ` ϵ

2 sd is pn ` ϵqd. So it must be that |P |p ϵ
2 qd ď pn ` ϵqd which gives the

upper bound of |P | “ Oppn
ϵ qdq.

n δ
2

Packing Abstract Set Systems. The following theorem, known as Haussler’s
Lemma [3][6][7][Chapter 5.2][5][Chapter 6.15], aims to extend this geometric bound
to abstract set systems that do not necessarily arise from geometrical settings.
It reassuringly confirms the intuition that the VC-dimension of a set system
matches the natural Euclidean notion of dimension and shows that sets of VC-
dimension d behave like d-dimensional balls. The first step to make sense of
packings for more abstract objects is to metrise these objects and introduce a
notion of distance for set systems. A natural choice is the cardinality of the sym-
metric difference. We thus say that two sets A and B are a distance ϵ apart if
|∆pA,Bq| “ |pA ´ Bq Y pB ´ Aq| “ ϵ.

Haussler’s Packing Lemma. Let X be a set of n elements and
H “ tH1, H2, . . . ,Hmu be a set system of VC dimension d on X. If H is

ϵ-separated then: |H| “ O
´

`

n
ϵ

˘d
¯

.

2. Primal Shatter Lemma

A key lemma in the proof of the theorem is known as the Primal Shatter Lemma
or Sauer-(Perles-)Shelah Lemma. It gives a tight upper bound on how big sets of
VC dimension d can be. The essence of the result is to confirm the intuition that
the worst complexity case is really to include all subsets of size at most d.

Primal Shatter Lemma. Let X be a set of n elements and
H “ tH1, H2, . . . ,Hmu be a set system of VC dimension d on X. For all
A Ď X, we have

|H|A| ď

d
ÿ

i“0

ˆ

|A|

i

˙

When |A| ě d, the previous sum can be upper bounded by p
e|A|

d qd “ Op|A|dq.

The main concept in the proof of this lemma, which we shall reuse later on, is
that of shifting. We also mention the existence of an elegant linear algebra proof
due to Pach and Frankl [1][2].
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Shifting Sets. Given the set system H “ tH1, H2, . . . ,Hmu on X and a fixed
element a P X, the shift of H by a is defined as the set system Ha obtained by
removing the element a from each set of H as long as it is not a duplicate of a set
already existing in H. Formally, for all i P rms we define:

H 1
i “

#

Hi, if Hi ´ a P H

Hi ´ a, otherwise
(1)

and say that the set H 1
i is Hi shifted by a.

The core idea behind shifting is that the size of the sets is of very little interest to
the VC dimension. Rather, it is the way that the sets intersect and overlap which
is captured by this measure of complexity. The idea behind shifting is to get rid of
the thrills of a set system and boil its sets down to a condensed form which still
captures the same complexity. It is an operation on a set system which maintains
the cardinality of the set system, but lowers the complexity of each set, all the while
making sure to not increase the VC-dimension of the resulting set system. This is
captured by the following two claims, the first of which is obvious by definition.

Claim 2.1. Shifting does not affect the cardinality of a set system: |Ha| “ |H|.

Claim 2.2. Shifting does not increase the VC dimension of a set system:
VC-dimpHaq ď VC-dimpHq.

Proof. We want to show that any set shattered by Ha is also shattered by H. In
other words, we want to show that every intersection of A with a member of Ha

we can obtain as an intersection with a set of H. Suppose then that the set A is
shattered by Ha. If a R A, the intersection from members of Ha with A are the
same as the intersections with their non-shifted counterparts in H. We can thus
assume that a P A. By assumption, Ha shatters A so there exists a set H 1

i P Ha

such that H 1
i X A “ B.

Case 1: a P B. This means that H 1
i was not shifted, so then Hi “ H 1

i P H gives
us the same intersection.
Case 2: a R B. A is shattered byHa so there exists H 1

j such that H
1
jXA “ BYtau.

This implies that H 1
j ´ tau must already have been in H and thus corresponds to

some Hk P H, otherwise Hj would have been shifted to not contain a. □

A

H ′
i

H ′
j

a
B

Hk

The natural idea after introducing shifting is to look at the shifting closure of a
set. This is the set system H obtained after repeatedly shifting H by every element
of X until no more shifts may be applied. Note that this set system must exist
since shifting strictly decreases the sum of the cardinalities of the sets Hi. The key
observation about H is the following claim.

Claim 2.3. The shifting closure H is downwards closed.
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Proof. By contradiction, if it were not, we could find at least one element to shift
it with. □

For convenience we group here the relevant properties of H:

Shifting Closure Properties. If H has VC dimension at most d, then the fol-
lowing hold:

(1) |H| “ |H|.
(2) VC-dimpHq ď VC-dimpHq.
(3) H is downwards closed.
(4) EpHq ě EpHq. (the definition and proof of this statement is delayed until
the next section).

Proof of the Primal Shatter Lemma . H has VC-dimension at most d. Thus by
Shifting Closure Properties (2) and Shifting Closure Properties (3) we know that
the largest set in H has at most d elements. Summing up the number of sets of H
by their cardinalities we immediately get:

|H|A| “ |H|A| ď

d
ÿ

i

ˆ

|A|

i

˙

□

3. The Unit Distance Graph

Given the set system H on X, let GU pHq be the graph with vertex set H such
that tHi, Hju is an edge if and only if dpHi, Hjq “ |∆pHi, Hjq| “ 1.

Lemma A. If H has VC dimension at most d, then |EpHq| ď d ¨ |H|.

Proof. Let us orient the edges of GU pHq from bigger sets to smaller sets. Using
Shifting Closure Properties (3), we know that each vertex H of GU pHq has exactly
|H| outgoing edges. Because of Shifting Closure Properties (2) and (3) we know
that sets ofH have cardinality at most d, which gives a bound of at most d outgoing
arrows for each vertex. Counting the total number of edges by summing up outgoing
edges for each vertex and using Shifting Closure Properties (4) and (1), we get:

|EpHq| ď |EpHq| ď d ¨ |H| “ d ¨ |H|

□

Proof of Shifting Closure Properties (4). Fix an element a P X. We want to prove
that the number of edges in the unit distance graph of the shift of H by a is not
any less than that in the unit distance graph of H. Consider an edge tH,H Y txuu

in GU pHq. If a R H, and x ‰ a then neither set-endpoint of the edge is affected
by shifting by a so the edge also exists in GU pHaq. If a R H but x “ a, then this
means that shifting H Y a would create a duplicate so once again both endpoints
of the edge are unnafected by shifting by a.
Assume then that a P H. Further assume that only one of the two sets H and

H Y x is shifted (otherwise the edge is preserved). There are two cases.
H shifts but not H Y txu. This case is illustrated on the left diagram. If H Y txu

did not shift, it means H Y txu ´ tau already existed in H and thus also in Ha.
This set is a neighbour of H shifted by a which gives us a new edge.

H does not shift but H Y txu does. This case is illustrated on the right diagram.
If H did not shift, it means H ´ tau already existed in H and thus also in Ha. This
set is a neighbour of H Y txu shifted by a which gives us a new edge.
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Note that in both of these cases the new exhibited edge is uniquely determined
by H, a and x and cannot arise from any other edge so they are all distinct.

a

a

x

H

H ∪ {x}

a

a

x

H − {a}

H ∪ {x} − {a}

GU (H)

GU (Ha)

a

a

x

H

H ∪ {x}

a

x

H ∪ {x} − {a}

GU (H)

GU (Ha)a

H − {a}

□

4. Proof of Haussler’s Lemma

To derive Haussler’s Packing Lemma we will instead prove the following theorem:

Main Theorem. Let X be a set of n elements and H “ tH1, H2, . . . ,Hmu be a
set system of VC dimension d on X. If H is ϵ-separated then there exists a subset
A of size r 8dnϵ s picked uniformly at random without replacement from elements of
X such that:

|H| ď 2 ¨ Er|H|A|s

Note that Haussler’s Packing Lemma follows directly from Main Theorem
through an application of the Primal Shatter Lemma.

Idea. We want to motivate the intuition that picking a random set of size n
ϵ is

the right idea. Our goal is to somehow ensure that the projection of H to A is
injective. Two sets of H project to the same set in A if and only if no element
of their symmetric difference is in A. But sets are ϵ-separated so their symmetric
difference has at least ϵ elements, each of them with a probability of 1

ϵ to end up
in A. In expectation there should therefore be one element of A in each symmetric
difference to ensure injectivity.

Goal. The proof of Main Theorem centres around a double counting argument
for a quantity which measures the failure of injectivity. Namely, we will give an
upper bound for the number W of sets in H that end up at unit distance in Ha.

Upper Bound. The upperbound on W will be quickly derived from a modified
version of Lemma A. Indeed, Lemma A is almost what we need: it counts the
number of sets of H|A at unit symmetric difference in GU pH|Aq. This is not quite
what we want, as many sets in H might end up at unit distance in H|A.
To account for this, we introduce the weighted unit distance graph, which introduces
weights to the unit distance graph meant to keep track of the cardinality of the fibers
under the projection to A. Namely, we give each vertex a weight corresponding to
the cardinality of its fiber under the projection to A. Each edge then has weight
equal to the product of the weights of its endpoints. This is exactly the number
of pairs of sets in H that end up as endpoints of this edge in GU pH|Aq. So that
summing up the weights of all edges exactly yields W .
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GU (H|A)

H1

H7

H3 H2

H5

U V

w({U, V } = 2 · 3

H

To simplify the proof, we will instead define the weight of an edge as the min-
imum of the weights of its endpoints. This is because in the proof, the sum of
the weights of the endpoints will be fixed. With this is mind, the minimum
and the product are interchangeable and within a factor 2 of each other since
1
2 minta, bu ¨ pa ` bq ď ab ď minta, bu ¨ pa ` bq.

Lemma A’. If H has VC dimension at most d, then W ď 2d ¨ |H|.

Proof. We count the edges of GU pH|Aq by summing the degrees of the vertices and
apply Lemma A:

ÿ

H1PH|A

degpH 1q “ 2 ¨ |EpH|Aq| ď 2 ¨ d ¨ |H|A|

an application of the pigeon hole principle thus guarantees the existence of a set
H 1 P H|A with degree less than or equal to 2d. By definition, each edge incident
to H 1 weighs less than or equal to the weight of H 1. Summing the weight of all
the neighbours of H 1 we thus get a total weight of less than or equal to 2d ¨ wpH 1q.
Removing H 1 from GU pH|Aq. The removing graph is a unit distance graph on
|H|A| ´ 1 vertices so induction finishes the proof:

W ď 2d
ÿ

H1PH|A

degpH 1q “ 2d ¨ |H|

□

Lower Bound. We select a subset A Ă X of size s “ r 8dnϵ s uniformly at random.
A naive starting point would be to find a lower bound on the probability that two
sets of H end up at unit distance after being projected to A and use linearity of
expectation to obtain W . This event is equivalent to when exactly one element of
the symmetric difference of these two sets of H is picked into A. This is a problem
because this depends on the cardinality of their symmetric difference and seems
hard to compute. The trick is that we only care about the sum over all pairs of
sets of H and we can count this sum differently: instead of summing over pairs of
sets we will isolate the contribution of a single element a P X in the unit distance
graph and sum over all choices of this element a (see figure below). The choice
of this element being arbitrary, by symmetry this contribution is the same for all
elements of A. So we will compute the expected sum instead by conditioning on
the first s´ 1 elements and looking at the expected number of pairs that end up at
unit distance after the last random element of a of A is picked.
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{a}

{a}
{a}

GU (H|A)

Edges of GU pH|Aq can be partitioned according to the single element
that they each correspond to. A single element a may correspond to

multiple edges.

Pick then a set of s ´ 1 elements A1 Ă X uniformly at random, and pick the
last s-th a of A at random in X ´ A1 (note that this is equivalent to picking a
uniform random subset of s elements). We refer to the boolean matrix view of a set
system to visualise this process, where we order the elements of X (the columns)
so that the first s ´ 1 columns are the elements of A1. We then order the rows of
this matrix according to the equivalence classes P1, P2, . . . , Pt given by the fibers of
the projection of H to A1. That is, for each prefix Vi of length s ´ 1 (i.e. a subset
of A1), Pi is the set of sets of H that project to Vi. Fix some i P rts and denote
by b the number of sets in Pi. Depending on whether the sets in Pi contain a or
not, we further divide them into two classes of size b0 (if they contain a) and b1
(otherwise).

P1

P2

Pt

...

A′

a

0 0

0 1

1 0

H

X

0

0 1

10

...

Pi

0 01 1

1

1 1

1 1

0

0

1

1

1 1 1 1

· · · · · ·

b1

b0

s− 1

A′

a

A

X

P1

x

x

H1

H2

H1

H2

...

H2

Pictorially in terms of unit distance graph, each vertex Vi of GU pH|A1 q corre-
sponds to a unique equivalence class Pi, which may split into two vertices connected
by an edge corresponding to tau in the unit distance graph of H|A.
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H1

H7

H3
H1

H7
H3

Vi Vi Vi ∪ {a}

GU (H|A′) GU (H|A′∪{a})

Pi
H

We want to compute the weight Wa of all the edges of GU pHAq that correspond
to the element a. For that purpose, we start by computing a lower bound for the
expected weight of the edge uniquely associated to Pi (it is 0 if it doesn’t exist).
By definition, this weight is simply mintb0, b1u ě b0¨b1

b0`b1
“ b0¨b1

b . Since the value of
b is independent of the choice of a, we get that:

Erminpb0, b1qs ě E
„

b0b1
b

ȷ

“
Erb0b1s

b

“
pnumber of pairs of sets of PiqPttwo sets of Pi differ on au

b

“

`

b
2

˘

Pttwo sets of Pi differ on au

b

Since by assumption all sets of H are ϵ-separated, and sets inside an equivalence
class agree on at least s ´ 1 points, the probability that a is in the symmetric
difference of two sets of Pi is at least ϵ

n´ps´1q
ě ϵ

n . Thus the expected weight
contribution of Pi is at least:

Etweight contribution of Piu “

`

b
2

˘

ϵ
n

b
“

pb ´ 1qϵ

2n

We can now sum over all equivalences classes to retrieve EtWau. Recall that
since equivalence classes correspond to sets of H|A1 and H|A1 has VC-dimension at
most d, by the Primal Shatter Lemma there are less than Cp ϵ

n qd sets in such a set
system, for some constant C ą 0.

EtWau “

t
ÿ

i“1

Etweight contribution of Piu

ě

t
ÿ

i“1

p|Pi| ´ 1qϵ

2n

“
ϵ

2n
p|H| ´ tq

ě
ϵ

2n

ˆ

|H| ´ C
´ ϵ

n

¯d
˙

Setting s “ r 8dnϵ s, we get:
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EtW u “ s ¨ EtWau

ě
sϵ

2n

ˆ

|H| ´ C
´n

ϵ

¯d
˙

“ 4d|H| ´ 4dC
´n

ϵ

¯d

Putting lower bound and upper bound together, we finally obtain:

4d|H| ´ 4dC
´n

ϵ

¯d

ď EtW u ď 2d|H|

4d|H| ´ 4dC
´n

ϵ

¯d

ď 2d|H|

2d|H| ď 4dC
´n

ϵ

¯d

|H| ď 2C
´n

ϵ

¯d

|H| “ O

ˆ

´n

ϵ

¯d
˙
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