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abstract. I investigate the tangent polygons inscribed in a plane curve (see Fig. 1 for an example of a 3-
gon). In particular I wonder if such polygons are common and if one can devise a numbering scheme based on the
geometrical properties of the curve (when they are countable), or perhaps in the form of a combinatorial formula
analogue to the Fabricius-Bjerre-Halpern formula (or its integral version). Focusing on a specific configuration I
am able to reduce the problem to the study of a one-dimensional dynamical map and glimpse into the fractal
structure of the set of points formed by the vertices of such polygons. In particular I show that two inflection points
creating a non-convex well shape in the curve are enough to give this set a fractal structure - that of a Cantor set.

Frame

Figure 1: Tangent 3-gon

The frame for this discussion and the condi-
tions of regularity for the curves we consider are
essentially the same ones as that presented in
Halpern’s formulation of the Fabricius-Bjerre formula
(see section 1.1 of [1]). We simply add what
seems like a natural definition for tangent poly-
gons and the regularity conditions that go with
it.

Let then S1 denote the one dimensional sphere obtained
as R{LZ, L P R˚

`. We consider the smooth, closed plane
curve defined as the smooth immersion γ : S1

ÝÑ R2

and denote by Γ :“ γrS1
s its locus.

Let T “
γ1

}γ1}
, N “ JT and κ “

@

N,T 1
D

be the

unit tangent vector, the principal normal vector and the

signed curvature of γ, where J=

˜

0 ´1

1 0

¸

. Let square

brackets denote the determinant, i.e for all u, v P R2 :

ru, vs :“ Detpu, vq “ xu, Jvy

I now introduce the same terminology introduced by J.Barbara in her thesis on a new proof of Fabricius-Bjerre
formula ([1]), in which my definition for tangent n-gons find a natural fit.



Tangent Rays Tangent Polygons Inscribed in Plane Curves 2

(Definitions/Frame). (i) An unordered pair ts, tu Ă S1 with s ‰ t is called a double point or a crossing if γpsq “ γptq.
A double point is called regular if the intersection is transverse, i.e if rγ1

psq, γ1
ptqs ‰ 0. Denote by cr “ crpγq

the number of regular double points of γ.

(ii) A point tsu is called an inflection point of γ if κpsq “ 0. An inflection point is called regular if κ1
psq ‰ 0. The

number of regular inflection points is denoted by infl “ inflpγq.

(iii) An unordered pair ts, tu P S1 with s ‰ t is called a bitangent pair if it is not a double point and the tangent
lines at γpsq and γptq coincide, i.e. if :

γptq ‰ γpsq and

#

rγ1
psq, γ1

ptqs “ 0

rγ1
psq, γpsq ´ γptqs “ 0

A bitangent pair is called regular if both points have non zero curvature, i.e κpsqκptq ‰ 0.

(iv) A set of n distinct parameters tt1, t2, . . . , tnu “ Ω Ă S1 is called a tangent n-gon if :

• For all a, b P Ω, ta, bu is not a double point

• There exists a sequence ω1, ω2, . . . , ωn of n distinct elements of Ω such that @i P v1, nw,
“

γ1
pωiq, γpωiq ´ γpωi`1rnsq

‰

“ 0

A tangent n-gon is called regular if κpω1qκpω2q . . . κpωnq ‰ 0.
We want to keep our notion of n-gon as general as possible so we won’t impose the following condition :
@i, j P v1, nw, j ‰ i ` 1rns ñ

“

γ1
pωiq, γpωiq ´ γpωjq

‰

‰ 0. Thus we allow our n-gons to look somewhat funky.
As expected, when n “ 2, 2-gons and bitangent pairs are one and the same.

From now on I will only concern ourselves with generic curves, in the following sense :

(Generic curve). Let γ : S1
ÝÑ R2. We say that γ is a generic curve if all the double points, bitangent pairs, inflection

points and n-gons are regular.

In that context we have the following remarkable combinatorial formula :

(Fabricius-Bjerre’s Theorem). Let γ : S1
ÝÑ R2 be a generic curve (in this instance there is of course no need for

the n-gons to be regular). Then cr, ext, int and infl are finite and the following relation holds :

ext “ int ` cr `
1

2
infl

Tangent Rays

The few results I will present here stem for my study of the dynamical system which corresponds to iterating tangent
rays on the curve, i.e I wish to study the map that links a point on the curve to the intersection point of its tangent
to the curve with the curve itself (fig. 3). In this section I try to define this properly.

The cartesian equation of the tangent to the curve γ at the point of parameter t is :
«

γ1
ptq, γptq ´

˜

x

y

¸ff

“ 0

For further clarity I define Tt :

2
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Tt :

#

R2
ÝÑ R

u ÞÝÑ
“

γ1
ptq, γptq ´ u

‰

Then the tangent to the curve γ at the point of parameter t can be simply written as :

␣

u P R2
|Ttpuq “ 0

(

Since all the bitangent pairs are regular we know that for a fixed t, the set of the intersection points of the tangent
at t to γ with γ itself is finite : |

␣

u P R2
|Ttpuq “ 0 ^ u P Γ

(

| “ k for some k P N.

Suppose γ has p bitangents and partition S1 into the corresponding 2p intervals I1, . . . , I2p :

␣

u P R2
|Ttpuq “ 0 ^ u P Γ

(

“
ď

iPv1,2pw

␣

u P R2
|Ttpuq “ 0 ^ u P γ rIis

(

b1

b2b3
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b4

i2

b1'
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b5'

b6'

b3'
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Figure 2: Partition of S1 according to the bitangents of γ, double points in green and inflexion points in blue

Now on each of these 2p intervals, if there is an intersection, it is unique. If there happens to be indeed one
intersection, then we can define the function τi that links t to the parameter of the intersection point in the interval
Ii. The domain of definition Λi of τi is then the set of parameters t that lead to tangents that intersect γrIis but no
double points :

Λi :“
␣

t P S1
| |

␣

u P R2
|Ttpuq “ 0 ^ u P γ rIis

(

X
␣

u P Γ | |γ´1
rtuus| “ 1

(

| “ 1
(

We then define τi as the function that links such a parameter t to the parameter of the only intersection point u

in the interval Ii :

τi :

#

Λi ÝÑ Ii

t ÞÝÑ γ´1
puq

Conveniently τi is continuous : using the fact that γ is smooth we can proove by contradiction that a discontinuity
would lead to another point of intersection.

3
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Differentiating Tt pτiptqq “ 0 gives us an expression of its derivative :

τ 1
iptq “

“

γ ˝ τi ptq ´ γptq, γ2
ptq

‰

rγ1ptq, γ1 ˝ τi ptqs

“
˘ }γ ˝ τi ptq ´ γptq} ¨

“

γ1
ptq, γ2

ptq
‰

}γ1ptq} ¨ rγ1ptq, γ1 ˝ τi ptqs

“
˘ }γ ˝ τi ptq ´ γptq} ¨

›

›γ1
ptq

›

›

3
¨ κptq

}γ1ptq}
2

¨ }γ1 ˝ τi ptq} ¨

”

γ1ptq

}γ1ptq}
, γ1˝τi ptq

}γ1˝τi ptq}

ı

“ ˘

›

›γ1
ptq

›

›

}γ1 ˝ τi ptq}
¨

}γ ˝ τi ptq ´ γptq} ¨ κptq
”

γ1ptq

}γ1ptq}
, γ1˝τi ptq

}γ1˝τi ptq}

ı

Figure 3: Function τ

Thus τi is differentiable everywhere exept at parameters that are part of a bitangent pair (and get sent on the
other parameter of the pair by τi), in this particular instance the derivative goes to ˘8.

(Derivative of τi).

τ 1
iptq “ ˘

›

›γ1
ptq

›

›

}γ1 ˝ τi ptq}
¨

}γ ˝ τi ptq ´ γptq} ¨ κptq
”

γ1ptq

}γ1ptq}
, γ1˝τi ptq

}γ1˝τi ptq}

ı (1)

Remarks :

•
„

γ1
ptq

}γ1ptq}
,

γ1
˝ τi ptq

}γ1 ˝ τi ptq}

ȷ

“ sin

ˆ
ż τiptq

t

κpsq.ds

˙

is simply the sinus of the angle between γ1
ptq and γ1

˝ τiptq.

• The sign of the "˘" is that of
@

γ ˝ τi ptq ´ γptq, γ1
ptq

D

, i.e. it’s a "`" if we’re dealing with a positive tangent
ray and a "´" if we’re dealing with a negative tangent ray.

This expression is very useful in which it provides us with an easy way to discuss the sign of τn
i

1
ptq.

Because we’re only concerned with the geometry of the problem we will assume from now on that our arc is
parametrised by arc-length and we won’t bother with the first term in (1).

If we consider t P Λ :“ YΛi (i.e. all the points for which a τ function can be define), and take a look at all
the couples of the form pt, τkptqq, k P v1, 2pp ` 1qw we should be looking at c closed shapes on a torus, where c is
the number of convex parts of our curve. Figure 1.2 and 1.3 show an example for one particular plane curve with
2 inflection points and one double point. In this particular case, c=2. The graph is either in full of dashed lines

4
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depending on whether the intersection point between the tangent at t and the curve was obtained through a positive
or a negative tangent ray.

Given the expression of the derivative for the τ functions we already knew that when we cross a bitangent (and
go from a certain τ function to the next) their derivative will jump from ˘8 to ´ ˘ 8. This can be seen very clearly
on figure 1.3. What’s more, we can easily identify the type of bitangent (internal or external) with the graph : on the
part that corresponds to positive tangent rays the external bitangent are the "outward" angles while the "inwards"
angles correspond to internal bitangent, this is reversed when we switch to the part that corresponds to negative
tangent rays. The succession of "inward" and "outward" angles is the embodiment of Fabricius-Bjerre’s theorem and
is closely related to its original proof.
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Figure 4: Partition in 2pp ` 1q intervals
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Figure 5: The graph of all the 2pp ` 1q associated τ functions form c disjoint closed graphs
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Case study/Inflexion wells

Because it allows us to deal with a single τ function and not to bother about multiple intersections, we look into
what happens in the simple configuration where two inflexion points dig out some a well into the curve. We restrict
the curvature between the two inflection points to obtain a simpler transition graph of the system and not bother
with more cumbersome intervals. This is captured by the following restrictions:

(Inflexion well). We say that the curve γ has an inflexion well if it has a bitangent pair ts, tu such that :

(i) the interval rmin ts, tu ,max ts, tus contains exactly two inflexion points and no double points

(ii)
ż maxts,tu

mints,tu

|κpsq| .ds ď 2π

b1

i1
i2

b1'

a1
a2

Figure 6: Inflexion well

So we assume that γ has an inflexion well rb, b1
s. Because we’re not concerned for the moment about the interaction

with the rest of the curve we will assume that this interval contains no other parameter belonging to a bitangent
pair. We can then work with a unique τ and resort to all the results known for one-dimensional maps. Using (1) we
can sketch what τ should look like (fig. 5). We will refer to τ|rb,a1s as the left component of τ and to τ|ra2,b1s as the
right component of τ .

Figure 7: Associated function τ

The study of this system can be reduced to that of its topological linear conjugate. We find that the behavior of
τ is essentially that of the tent map save for the fact that its two branches are orientation preserving. Down below
are listed a few relevant results that come out from this study :

7
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(The stable set ∆ is a Cantor set). The stable subset ∆ for the map τ is the set of points which never escape Λ

under forward iteration (which corresponds ultimately to the set of points which never escape the inflexion well). We

thus define ∆k :“
8
č

k“1

!

x P rb, b1
s|τk

pxq P rb, b1
s

)

for all k P N and set ∆ :“
8
č

k“1

∆k.

We claim that ∆ is a Cantor set. As such ∆ is compact, perfect, nowhere dense and totally disconnected. Thus in
an inflexion well there are no intervals whose image by γ is entirely made up of n-gons

Remark. We can easily solve the sum of the intervals subtracted at each iterations for the linear conjugate of τ
and we obtain that the stable set is of measure 0 and is therefore a canonical Cantor set.

Figure 8: γ r∆1s, γ r∆2s and γ r∆3s

(The set of periodic points of τ is countable). Define Pkpτ :“ tx |τk
“ xuq for all k P N and set Ppτq “

8
ď

k“1

Pkpτq.

Then @k P N,#Pkpτq P N and Ppτq is a countable set.

(τ is chaotic on ∆). All the periodic points of τ are sources and τ has chaotic orbits.

We have the following transition graph with the sub-intervals I “ rb, i1s, J “ ri1, i2s and K “ ri2, b
1
s for the map

τ :

I K

J

Figure 9: Transition graph for τ

From this we deduce the following result :

(Existence). For every integer n, we are guaranteed the existence of at least one tangent n-gon inscribed in the
inflexion well.

Proof. For odd integers n select the path IpKJq
t n
2

uI.
For odd integers n select the path IKpJKq

t n
2

uI.
By construction these paths cannot correspond to periodic points of lower period.

8
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